Abaqus - Basic
1. Units
量纲 Dimension | 单位Units Kg-m-s | 单位Units Kg-mm-s | 单位Units T-mm-s-Mpa | 单位Units g-mm-s |
长度$L$ | $m$ | mm = $\rm 10^{-3} m$ | mm = $\rm 10^{-3} m$ | mm = $\rm 10^{-3} m$ |
质量$M$ | $Kg$ | Kg | T(吨) $=\rm 10^3Kg$ | g$=\rm 10^{-3}Kg$ |
时间$t$ | $s$ | s | s | s |
温度$T$ | $K$ | K | K | K |
面积$A(L^2)$ | $m^2$ | $= \rm mm^2 = 10^{-6} m^3$ | $= \rm mm^2 = 10^{-6} m^3$ | $= \rm mm^2 = 10^{-6} m^3$ |
体积$V(L^3)$ | $m^3$ | $ = \rm mm^3 = 10^{-9} m^3$ | $ = \rm mm^3 = 10^{-9} m^3$ | $ = \rm mm^3 = 10^{-9} m^3$ |
力$F$ | N(牛顿、牛)$=\frac{Kg\cdot m}{s^2}$ | $\rm \frac{Kg \cdot mm}{s^2}$ $ = \rm 10^{-3}N$ | $\rm \frac{T \cdot mm}{s^2}$ $ = \rm N$ | $\rm \frac{g \cdot mm}{s^2}$ $ = \rm 10^{-6} N$ |
密度$ρ$ | $\frac{Kg}{m^3} = \frac{10^{-3}g}{cm^3}$ | $\rm \frac{Kg}{mm^3} = \frac{10^{6}g}{cm^3}$ | $\rm \frac{T}{mm^3} = \frac{10^{9}g}{cm^3}$ | $\rm \frac{g}{mm^3} = \frac{10^{3}g}{cm^3}$ |
能量、焓、热量$\frac{M\cdot L^2}{t^2}$ | J(焦耳)$N \cdot m = \frac{Kg \cdot m^2}{s^2}$ | $\rm \frac{Kg \cdot mm^2}{s^2} $ $\rm = 10^{-6}J$ | $\rm \frac{T \cdot mm^2}{s^2} $ $\rm = 10^{-3}J$ | $\rm \frac{g \cdot mm^2}{s^2} $ $\rm = 10^{-9}J$ |
功率、热流量$\frac{M\cdot L^2}{t^3}$ | W(瓦)$\frac{J}{s} = \frac{Kg \cdot m^2}{s^3}$ | $\rm \frac{Kg \cdot mm^2}{s^3} $ $\rm = 10^{-6}W$ | $\rm \frac{T \cdot mm^2}{s^3} $ $\rm = 10^{-3}W$ | $\rm \frac{g \cdot mm^2}{s^3} $ $\rm = 10^{-9}W$ |
压力、应力、模量$\frac{M}{t^2\cdot L}$ | $\rm Pa = \frac{N}{m^2} = \frac{Kg }{s^2\cdot m}$ | $\rm \frac{Kg }{s^2\cdot mm}$ $\rm 10^3Pa = kPa$ | $\rm \frac{T }{s^2\cdot mm}$ $\rm 10^6Pa = MPa$ | $\rm \frac{g }{s^2\cdot mm}$ $\rm Pa$ |
2. Mesh网格
3. Operation skills
3.1 Visualization
The results obtained by submintting a job in Abaqus often has mesh grid. Operations to remove the mesh grid lines?
○ Select the "Options" tab and click on the "Common" option.
○ "Common Plot Options" --> "Basic" --> "Visible Edges" --> Select "Free edges" or "No edges".
4. Materials
steel: T-mm-s-Mpa
Denisity: $7.85 g/cm^3 = 7850 kg/m^3 = 7.85 \times 10^{-9} T/mm^3$ Abaqus setting: $ 7.85 \times 10^{-9} $
Young's modulus: $210 GPa = 210 000 MPa $ Abaqus setting: $ 210 000 $
Poisson Ratio: 0.3
